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Almtract--In rocks that undergo ductile deformation, preferred orientation develops as a result of intracrystal- 
line slip and mechanical twinning. The orientation distribution is a consequence of the microscopic mechanisms 
and of the strain path. It can be used to get some insight into the deformation history; however it is never unique. 
The interpretation relies largely on polycrystal plasticity theory. The concepts of stress equilibrium and strain 
compatibility, which are two extreme assumptions made to model deformation, are discussed. New approaches 
such as the viscoplastic self-consistent theory are a compromise and may be applicable to mineral systems which 
display a high degree of plastic anisotropy. Important extensions allow for heterogeneous deformation in the 
polycrystal from grain to grain and even within grains in correspondence with mierostructural observations. All 
these theories defy the popular notion which is becoming entrenched in the geological literature, that the 
microscopic slip plane normal aligns with the axis of maximum principal compressive stress, and that in simple 
shear the crystallographic slip plane rotates into the macroscopic shear plane and the slip direction into the 
macroscopic shear direction, an orientation referred to by geologists as 'easy glide'. It is emphasized that future 
work on texture development of rocks should be based on rigorous physics rather than ingenious intuition, in 
accordance with an old recommendation of Walter Schmidt. 

INTRODUCTION 

THE importance of rock fabric as an indicator of geologic 
history was recognized by early petrologists. D'Halioy 
(1833, p. 227) and Cotta (1946, p. 117) used the terms 
s tructure  and tex ture  to describe properties of polycrys- 
talline materials, but Naumann (1850, p. 443) was the 
first to introduce clear definitions that distinguished 
structural properties such as grain size and grain shape 
and textural properties which relate the directional 
arrangement of crystals. In this paper the term 'texture' 
is used interchangeably with 'crystallographic preferred 
orientation' which is different from the more general 
usage in petrography where 'texture' implies also grain 
size, grain shape and interrelations, and crystallinity. 
This should cause no ambiguity. The various aspects of 
'texture' are intimately related to deformation, which is 
one of the most important processes in the Earth. It was 
the Austrian and German school of mineralogists and 
petrologists that initiated the quantitative study of fabric 
development. Some landmarks include the discovery of 
mechanical twinning in calcite by Miigge (1883) and slip 
in various minerals (e.g. Miigge 1898, Johnsen 1918, 
Veit 1922). In fact, Miigge's (1898) paper is still the only 
source reference for deformation mechanisms of many 
minerals. Such contributions to the study of deformation 
mechanisms were surprisingly quantitative and have 
remained relevant to this day. 

Investigations on single crystals were extended to 

deformed polycrystals, and fabric analysis blossomed 
under the direction of Bruno Sander in Innsbruck and 
Walter Schmidt in Berlin (e.g. Sander 1911, 1923, 1930, 
Schmidt 1912, 1932). These two scientists made the first 
serious attempts to interpret the development of crystal- 
lographic preferred orientation in deformed rocks, but 
each approached the problem with an entirely different 
philosophy. This point is important because 60 years 
later it remains at the root of the modern controversy 
about texture interpretation. Sander (e.g. 1931, p. 139: 
"man miisste dem induktiven Weg der Geffigeanalyse 
von Gesteinen gegeniiber der technologischen Deduk- 
tion noch immer das erste Wort lassen . . . " )  maintained 
that an empirical-comparative approach was necessary 
because of the enormous complexities which preclude 
an analytical solution. Schmidt, on the other hand (e.g. 
1927a, 1931), insisted that any interpretation needs to be 
based on physical principles. At the time, polycrystal 
plasticity theory was in its infancy: it would take a 
generation to develop, and only with the recent advent 
of high-speed computers can the deformation of poly- 
crystals be modelled more or less quantitatively. Ironi- 
cally, it was Schmidt's (1927b, p. 335: "Als Leitfaden der 
Erkl/irung muss die Erfahrung der Metallographen die- 
nen, dass die Regelung in einer Einordnung der dichtest 
gesetzten Raumgittergeraden und Ebenen in die Richt- 
ungen der Umformung besteht, als welche bei uns 
Schieferungsebene und Richtung der Durchbewegung 
wirken.") oversimplified application of the physical con- 
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cept that a densely packed lattice direction orients itself 
into the macroscopic shear direction which introduced 
much of the confusion which still persists. Clearly, 
deformation is governed by physical processes, and in 
this respect Schmidt's approach should ultimately pre- 
vail, but only after painstaking quantitative theoretical 
and experimental work by materials scientists and physi- 
cists for which Reid (1973) provides a good review. 

It is surprising how long it has taken geologists to 
accept these contributions. Even in the famous 1950 
edition of Sander's Einffihrung in die Gefiigekunde der 
Geologischen Krrper there is no mention of E. Schmid 
(1928), who described single crystal deformation by 
introducing the concept of critical resolved shear stress, 
of Sachs (1928) who developed the first comprehensive 
polycrystal plasticity theory, or of Taylor (1938) who 
proposed a new plasticity theory which has since proved 
to be one of the most successful approaches. Nor did 
Sander mention dislocations, the motor of deformation 
and recrystallization, which had been proposed inde- 
pendently by Orowan (1934), Polanyi (1934) and Taylor 
(1934). Griggs and Turner in their Yule marble studies 
deserve credit for making geologists aware of progress in 
materials science (e. g. Turner et al. 1956). More recently 
Lister et al. (1978) applied the Taylor theory in the first 
quantitative model of fabric development in quartz. 

Although texture analysis has gained renewed popu- 
larity among geologists, it has in some ways regressed, 
following a course depending either on plain intuition or 
simple geometrical constructions rather than well- 
founded physical concepts. The reasons for this re- 
gression lie with the physical complexity of the subject, 
which is now commonly beyond the background of a 
structural geologist. The most efficient approach is to 
rely on interdisciplinary collaboration with materials 
scientists. Most minerals are admittedly more complex 
materials than face-centered-cubic (fcc) metals, and 
classic theories cannot be applied directly. Rather than 
reject polycrystal plasticity theory for minerals having 
less than five slip systems and return to a phenomeno- 
logical approach (as recommended, for example by 
Mainprice & Nicolas 1989, p. 176), we should perhaps 
strive to develop modifications to include more general 
cases. 

The purpose of this paper is to clarify some miscon- 
ceptions about interpretation of preferred orientations 
in rocks by explaining some concepts of polycrystal 
plasticity theory in non-mathematical language. Specifi- 
cally two assumptions which are commonly made by 
geologists are challenged. 

(1) In axial compression the slip plane normal orients 
itself parallel to the compression direction. 

(2) In simple shear deformation, the 'easiest' slip 
direction orients itself parallel to the macroscopic shear 
direction and the 'easiest' slip plane orients itself parallel 
to the macroscopic shear plane, an orientation which 
geologists have called 'easy slip'. (The expression 'easy 
slip' or 'easy glide' was originally used by metallurgists to 
describe single slip deformation of copper single crystals 
with low work hardening, not an orientation with a high 

'Schmid factor' or a low 'Taylor factor', discussed be- 
low.) 

There are many examples in the literature where 
interpretations of preferred orientations in rocks are 
based on these assumptions, beginning with Schmidt 
(1927b), reiterated by Turner (1948, p. 246), and ap- 
plied, among others, by Trommsdorff & E. Wenk 
(1963), H.-R. Wenk (1965), Etchecopar (1977), Schmid 
& Casey (1986), Etchecopar & Vasseur (1987), Main- 
price & Nicolas (1989), Law (1990) and Law et al. 
(1990). The two assumptions mentioned above are not 
always incorrect, they are just not general. If, for in- 
stance, a crystal were in one of these preferred orien- 
tations, if it were deformed only on a single slip system, 
and if it were not constrained by neighbors, then it 
would---during deformation in compression and simple 
shear, respectively--indeed stay in the predicted pre- 
ferred orientation. Such 'stable' end orientations appeal 
to the intuition because they are easy to visualize as 
resulting from the flow of rigid particles in a viscous 
medium: the slip directions are rods and slip planes 
platelets. However there is no obvious reason why 
crystals should rotate into these orientations, and not 
into others. Futhermore, most minerals have more than 
one slip system, i.e. the slip plane and the slip direction 
are not unique. 

A real polycrystal which deforms and remains coher- 
ent has to fulfill both stress equilibrium and strain 
compatibility, and from the mechanical point of view 
there is a unique solution. However to solve this prob- 
lem analytically is very difficult. Two extreme model 
approaches are most tractable. One assumes that each 
crystal deforms as an isolated grain with no knowledge 
about its neighbors, in a uniform stress field. This 
approach, which provides stress equilibrium, is a lower 
bound limit for stress. The second approach is to assume 
that the grain is totally controlled by its neighbors and 
suffers the identical strain of the aggregate, which 
guarantees compatibility at grain boundaries and is an 
upper bound limit for stress (Kocks 1970). These two 
concepts are illustrated with some mineral examples, 
mainly from our own work. Neither approach, it will be 
seen, predicts textures that conform with intuition. The 
response of real materials lies somewhere between the 
upper and lower bound solution, in a compromise to 
balance stress equilibrium and strain compatibility. As 
long as the two solutions are close--as is often the case in 
fcc metals--details are of little concern. However for 
minerals with low crystal symmetry and few slip systems, 
a compatibility and an equilibrium model can give very 
different answers and such systems need to be 
approached with more sophisticated theories that have 
recently been developed. 

STRESS EQUILIBRIUM 

In 1928~ Schmid demonstrated experimentally for 
single crystals of Zn that in compression only that 
component of an applied force is active which is resolved 
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a b 
Fig. 1. Sehmid factor cos # cos ~. for axial extension or compression 
deformation of calcite by r-slip in the negative sense, represented as 
contours of the unique stress axis in crystal co-ordinates. The 
c = [0001] axis is in the center. (a) Single slip systemwith a slip plane 
normal r 1 = (10T4) and a slip direction g(r l )=  [2021]. (b) Combi- 
nation of the three symmetrically equivalent  systems rl,  r2 and r3 
(I0]4)(2021). Maximum 0.5, min imum - 0 . 5 ,  contour interval 0.05. 
The region with a negative Schmid factor in which no deformation can 
occur in compression in the negative sense [202T] and in extension in 

the positive sense [2021] is dotted.  Equal-area projection. 

on the slip plane and in the slip direction, leading to the 
cos @ cos 3. law, or Schmid factor, where ~ is the angle 
between slip plane normal and the applied compression- 
al or tensional force and 3. the angle between the slip 
direction and the applied force. The reason for this 
behavior is that slip occurs by movements of dislocations 
whose geometry is crystallographically controlled. 
According to this concept, if a stress is applied, no plastic 
deformation occurs until the shear stress resolved on the 
slip system reaches a critical limit, the critical resolved 
shear stress, which is a material constant. The crystal 
orientation is crucial for determining the necessary ap- 
plied stress. Figure l(a) shows the contoured Schmid 
factor (or 'resolved shear stress coefficient') for the 
compression direction, for slip on the sli_p_plane rl = 
(1014) in the slip direction g(rt) = [2021] (negative 
sense) in calcite. The z-axis (0001) is in the center and, 
since r 1 and g(rl) are roughly at 45 ° to (0001), the largest 
Schmid factor (0.5) is at (0001) and this is the optimal 
orientation for deformation in axial compression. The 
Schmid factor is zero at 90 ° to rl and g(rl). The crystal 
cannot be deformed on this slip system outside this limit 
(dotted area). The situation is complicated by the fact 
that in all crystals except those of triclinic symmetry 

there are several symmetrically equivalent systems, such 
as rt = (1014), r2 = (1104) and r3 = (0114) in calcite. In 
Fig. l(b) the Schmid factors for the three slip systems are 
combined, selecting for contouring in the superposition 
always the highest value corresponding to the active slip 
system. There may also be slip on symmetrically non- 
equivalent s_ystems such as r = {10]-4}(202]') and 
f(0112}(2021) in calcite. This is because activation 
depends not only on the Schmid factor but also on the 
relative value of the critical resolved shear stress for each 
system. 

Another consideration is the sense of slip. During slip, 
local bonds are broken and exchanged. Even though 
many minerals are centrosymmetric, the deformation 
across the slip plane is not (Fig. 2), and the critical shear 
stress for one sense (Fig. 2a) may be different from that 
for the other sense (Fig. 2b). For most materials this 
difference is not very well established, mainly through 
lack of experimental data rather than absence of the 
effect. One of the best examples for a difference in sense 
is calcite, where slip on (10]-4} in the negative sense 
(2021) is preferred over that in the positive sense (2021) 
(Turner et al. 1954) (Fig. 2c). Obviously mechanical 
twinning can only occur in one sense (Fig. 3). 

During slip an unconstrained crystal changes its shape 
but does not rotate (Fig. 4b). However, in a compression 
experiment the ends of the crystal must remain in 
contact with the piston. Accordingly it rotates the slip 
plane normal toward the compression direction (Fig. 
4c). Similarly in tension rotation must accompany defor- 
mation if the pistons remain coaxial. In polycrystals 
similar constraints, imposed by neighbors, are respon- 
sible for rotations which lead to the development of 
preferred orientations. Let us turn to calcite again and 
assume that it deforms only by slip on r -  = 
{1014}(202T). In Fig. 5 rotations of the compression 
direction are represented in inverse pole figures which 
represent a specimen axis with respect to crystal co- 
ordinates rather than a pole figure which represents a 
crystal axis with respect to specimen co-ordinates. In- 
verse pole figures are particularly useful for axial defor- 
mation where only a single specimen axis (compression 
or extension) is relevant. 

Each grain in a polycrystal deforms according to the 
external stress. As we increase the applied stress the 

a b 
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Fig. 2. (a) & (b) Schematic sketch of a crystal structure across a slip plane to illustrate the lack of centrosymmetry which 
explains the difference in strength for positive and negative sense of shear. (c) Definition of the positive (+ )  and negative 

( - )  sense of slip relative to the c = [0001] axis in calcite (after Turner  et al. 1954). 
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Fig. 3. Mechanical twinning can occur only in one sense as prescribed 
by the crystal structure. The twinning shear y is indicated. 
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Fig. 4. In a compression experiment a rectangular crystal (a) deforms 
by slip into a parallelogram (b). Since pistons keep two sides of the 
crystal parallel, a lattice rotation fl is imposed relative to external stress 

co-ordinates o 11. 

grains strain only elastically. Then, at some point those 
grains with an optimal Schmid factor for slip on r2 in the 
outlined sector start to deform with rotations of the 
compression direction towards r2 = (1104). As they ro- 
tate they become less favorably oriented; for defor- 
mation to proceed, the stress must be increased. As we 
increase stress, the resolved shear stress increases on 
other slip systems and grains with different orientations 
also become active, all rotating along trajectories indi- 
cated in Fig. 5(a). At some point compression axes reach 

the border between rx = (10i4) and r2 = (1104) slip. 
There is probably some overshoot, with r2 dislocations 
still active in the r 1 field, but then rl dislocations become 
active and the combined rotation trajectory of symmetri- 
cal rl and r 2 slip is the vector sum (Calnan & Clews 1950, 
Turner e t  a l .  1956, Wenk e t  al .  1973). Rotations follow 
the e - m  borderline and reach a stable orientation at its 
intersection with the great circle connecting the two 
active slip plane normals. This is in the vicinity of 
e 3 = (0118), which, according to this model, constitutes 
a 'stable orientation' (assuming that only r-slip is active). 
Note that neither the active slip plane rl nor the slip 
plane r z are normal to the compression axis. The com- 
pression axis can never reach the slip plane normal 
because at that point the Schmid factor is zero and an 
infinitely high stress would be required to activate slip. 
The Schmid model allowing for symmetrical duplex slip 
(which is present in most crystals except those that are 
triclinic and if the slip vectors and slip plane normals are 
parallel to unique symmetry axes such as (010)[100] slip 
in olivine), thus predicts textures which are at variance 
with our 'natural intuition' and assumption i introduced 
above. In the case of calcite, the texture with a compres- 
sion maximum at e is in reasonably good agreement with 
axial compression experiments at high temperatures on 
marble (Fig. 5b) (Spiers 1979) and limestone (Fig. 5c) 
(Wenk e t  al .  1973). 

STRAIN COMPATIBILITY (TAYLOR THEORY) 

The model described above for calcite is a rather 
crude approach. Only at very small deformations can a 
grain deform independently of its neighbors. When a 
dislocation reaches a grain boundary, it will project 
stresses into the neighboring grain, and the neighbor, 
depending on its orientation, will impose backstresses 

~ c 

a = 1120 ~ a 
rn = 101"0 rn 

c ~,~e VW :51 700°C, 1.7kb \ .a 56% 

m 

a b c 
Fig. 5. (a) Rotations of crystals during axial compression of calcite which deforms by { 1014}(2021) slip. The Schmid factor 
for slip on r2 is contoured in crystal co-ordinates (inverse pole figure) (cf. Fig. lb). In axial compression the compression axis 
moves towards the pole of the slip plane (r 2 for the sector illustrated). Some rotations are indicated by arrows. Whenever the 
line c - m  is crossed, r I slip becomes active and rotations are reversed towards r 1 . Compression axes along c - m  undergo 
duplex slip on r I and r 2 and rotate towards the intersection with the great circle connecting r t and r 2 . This position is a stable 
orientation for r-slip according to the Schmid model. (b) Measured rotation trajectories of calcite crystals in a marble 
deformed in axial compression (after Spiers 1979). (c) Experimentally deformed, non-recrystallized limestone displays an 

orientation distribution which is in good correspondence with the model described in (a) (after Wenk et  al .  1973). 
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a b 
Fig. 6. Dislocations are active in grain A and move towards the grain 
boundary with B (a). As they reach the boundary they create stresses 
and back stresses which activate new dislocations both in B and A 

(after Leffers 1981). 

(Fig. 6). If neighbors have a similar orientation, back- 
stresses may be assumed to be small; if the orientation is 
different, and the neighbor cannot deform, these 
stresses may be very high. To solve this problem satisfac- 
torily, one needs to know the orientation of each grain 
and the orientation and morphology of all neighbors. 
Then one could approach the problem with the finite 
element theory, but even for two-dimensional models 
the computer requirements are prohibitive (e.g. Asaro 
& Needleman 1985, McHugh et al. 1989). Furthermore, 
crystallographic slip and texture development are three- 
dimensional processes and any two-dimensional model 
is not very realistic. Also, in most cases we do not have 
an adequate description of the initial fabric. Only orien- 
tations of grains are measured and the orientation, size 
and shape of neighbors are unknown. It is not inconceiv- 
able that Sander's "Achsenverteilungs Analyse (AVA)" 
(axis distribution analysis) (Ramsauer 1941, Sander 
1950) which deals with orientation correlations and local 
environments will be revived for future work and be- 
come accessible to quantitative interpretation (e.g. 
Adams 1986), particularly with the recent possibility of 
measuring orientation distributions with the scanning 
electron microscope (e.g. Lloyd et al. 1987). 

In 1938 Taylor proposed an ingenious and simple 
solution to avoid gaps and overlaps at grain boundaries: 
to impose homogeneous deformation; i.e. all grains 
should undergo the same shape change regardless of 

their orientation. Figure 7 illustrates a section through a 
polyhedral microstructure consisting of two phases. All 
grains have been deformed homogeneously in pure 
shear to an equivalent strain of 50%. During such 
deformation grain boundaries and vertices remain in- 
tact. Homogeneous deformation requires that each 
grain be able to undergo the macroscopically imposed 
shape change. Since the 3 x 3 strain tensor is symmetri- 
cal, and because of volume preservation the product of 
the diagonal elements remains constant, there are five 
variables which require five degrees of freedom. Each 
independent slip system contributes one degree of free- 
dom and up to five independent slip systems are necess- 
ary to produce an arbitrary shape change (e.g. Groves & 
Kelly 1963). For special deformation conditions and 
crystal orientations, fewer systems may suffice (e.g. two 
in pure shear, in axial compression at least three are 
necessary), but never more than five need to be acti- 
vated. In many crystals there are more than five poten- 
tial slip systems. For example, in fcc metals {111}(110) 
slip involves 48, and in calcite r and f slip and e twinning 
add up to 21. A major problem lies in selecting the five 
active systems in each grain. Taylor proposed selecting 
that combination of five which requires the least amount 
of plastic work; this depends on critical resolved shear 
stresses and orientation. Quite analogous to the Schmid 
factor for single slip, a Taylor factor can be defined (e.g. 
Kocks 1970, Gil Sevillano et al. 1980, Van Houtte & 
Wagner 1985). Whereas the Schmid factor is large if a 
slip system is favorably oriented for slip, the Taylor 
factor is large for orientations which are unfavorable. In 
early applications of the Taylor theory an artificial 
ambiguity was introduced by assuming strict strain rate 
insensitivity of the slip systems. In fcc metals with 
{111}(i10) slip, for example, eight systems instead of 
five are equally likely to be activated. This problem 
vanished when Hutchinson (1970) and Asaro & Needle- 
man (1985) introduced rate sensitive constitutive 
equations which can be incorporated in a modified 
Bishop--Hill (1951) approach (e.g. Kocks & Canova 
1981). 

In the equilibrium model a grain can deform as soon as 

a b 
Fig. 7. Two-dimensional section through a three-dimensional microstructure consisting of two phases. Polyhedra were 
produced by generating 200 grain centers at random and constructing bisecting planes between pairs of points. The grain 
polyhedron is defined as the inner envelope of these planes around each center. The microstructure is repeated by 
translation. (a) Microstructure before deformation. (b) Microstructure after 50% homogeneous deformation in pure shear. 
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Fig. 8. Two-dimensional homogeneous deformation of a microstruc- 
ture with originally square shaped grains. The macroscopic strain 
supplies the same rectangular space for each grain. In two dimensions 
two slip systems, s I and s2, are sufficient to deform each grain to this 
rectangular shape; however, depending on crystal and slip system 
orientation, these rectangles have a different orientation and need to 
be rotated to fit into the provided space. The rotations o~ produce 

preferred orientation. 

the critical shear stress on one slip system is reached. For 
the Taylor compatibility theory the stress needs to be 
increased until the critical shear stress on all five systems 
is reached. Therefore the yield stress for compatibility is 
higher ('upper bounds') than for equilibrium ('lower 
bounds') as can be illustrated with the single crystal yield 
surface. In an equilibrium model the weakest systems 
control deformation, whereas in the Taylor model the 
stronger systems contribute equally and determine the 
yield stress. 

Once the five active slip systems have been selected, 
shears on each system can be determined and, corre- 
spondingly, the rotation of each grain. In the case of the 
Schmid model, at least for compression geometry, ro- 
tations can be relatively easily visualized. For Taylor 
conditions our brains are unable to predict the five active 
systems, determine the shear on each and derive from 
them the effective grain rotation. This can only be done 
with the help of high-speed computers, which is the main 
reason why the Taylor theory was never quantitatively 
applied for 30 years after it was first proposed. Only a 
few years ago large mainframe computers were still a 
prerequisite, but today most of the calculations can be 
performed efficiently on affordable personal computers. 

Within the Taylor model we can visualize rotations as 
follows: according to the compatibility criterion, the 
macroscopic strain prescribes for each grain a poly- 
hedral shape in the polycrystal (Fig. 8, top). On the five 
slip systems we deform a crystal to this shape; however, 
in general the resulting polyhedron needs to be rotated 
to fit into the prescribed cavity (Fig. 8, bottom). This 
rotation of a grain leads to development of preferred 
orientation. Rotations do not, in general, go towards 
an 'easy slip' orientation, as is intuitively clear for com- 
pression and extension. 

The Taylor theory is illustrated with simple shear 
deformation of a quartz aggregate assuming basal 
(0001)(1210) (normalized critical shear stress rc = 1), 
prismatic (1010}(1210) ( rc=0.4) ,  and pyramidal 
(1011)(1210) (re = 3) and {10]-1}(2]-]'3) (rc = 6) slip. 
This corresponds to deformation at moderate to high 
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temperature (model fl of Wenk et al. 1989a), where 
prismatic slip is preferred over basal slip. Several fea- 
tures are observed in (0001) and (1120) pole figures after 
a shear strain of), = 1.732 (Fig. 9, left side). The rotation 
trajectories illustrate that crystals rotate relative to the 
shear plane. Also they document the lack of stable 
orientations in simple shear in accordance with recent 
theoretical investigations (e.g. Canova et al. 1984, 1988, 
Toth et al. 1988). Crystals constantly rotate, particularly 
fast for rate-sensitive materials with a small stress ex- 
ponent (e.g. 3 in the case of quartz, Heard & Carter 
1968), which is contrary to the intuition that the slip 
plane orients itself into the shear plane (e.g. Etchecopar 
1977, Schmid & Casey 1986, Law et al. 1990). The 
reason for texture development in simple shear is that 
rotations occur at different rates for different orien- 
tations, with maxima in the pole figures corresponding 
to orientation regions in which rotations are slowest. 
The orientation distribution in simple shear is in a 
dynamic condition. Notice particularly that in these 
simulated quartz textures there is neither an alignment 
of the dominant slip planes (1010} and (0001) in the 
macroscopic shear plane nor an alignment of the domi- 
nant slip direction (1210) in the macroscopic shear direc- 
tion, as suggested by assumption 2. Instead, the distri- 
bution is asymmetric. 

This is confirmed by experiments for quartz at low 
strain (e.g. Dell'Angelo & Tullis 1989) and for flint 
(Mainprice & Paterson in press). It is also true for such 
materials as fcc metals, where the slip plane (111} is 
inclined to the shear plane (Fig. 10a). In halite where 
(110} is the favored slip system, there is a {110} maxi- 
mum (Fig. 10b) and in calcite where (10]-4} is the 
dominant slip system, { 1014} poles display a maximum 
normal to the shear plane (Fig. 10c). But in both cases 
the slip direction is inclined to the shear direction. None 
of these materials develop orientation distributions con- 
sistent with the 'easy glide' hypothesis. 

Maxima in the orientation distribution are dependent 
on slip systems and deformation history, and may rep- 
resent a dynamic  state or a stable state. In the former case 
textures never become exceedingly strong; in the latter 
they reach stronger concentrations with increasing de- 
formation. Because of the complexities outlined above, 
both the Taylor and the Schmid models predict that 
there is no simple relationship between orientation of 
maxima in the texture and their disposition relative to 
macroscopic strain co-ordinates and the active slip sys- 
tems. Because this issue has been at the root of much 
confusion, it is useful to discuss another concept, ideal 
orientations. 

IDEAL ORIENTATIONS AND THE 
ORIENTATION DISTRIBUTION FUNCTION 

Increasingly, three-dimensional representations are 
being used to express the predicted or measured re- 
lationship between the reference sample co-ordinate 
system and the orientation of crystallites. Most com- 
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Taylor n = 3 \ self-consistent n = 3 
\ 

Fig. 9. Simulated (0001) and (1120) pole figures for quartz deformed at moderate to high temperature conditions 
(prescribed by the critical resolved shear stresses for the slip systems, model fl of Wenk et al. 1989a) in simple shear, and 
assuming a viscoplastic behavior described by a power law with a stress exponent n = 3. Taylor theory (left) and viscoplastic 
self-consistent theory (right). Top: 200 grains after a shear of 1, = 1.732. The size of symbols is proportional to the 
accumulated change in grain shape (corresponding to plastic work). Bottom: rotation trajectories of 10 grains with 5% 
equivalent strain increments. Square represents the initial orientation. The size of symbols is proportional to the Taylor 

factor (effective stress). The sense of shear is indicated at the bottom. Equal-area projection. 

monly  the probabil i ty funct ion of  the three Eule r  angles 
(defining with three rota t ions  the relationship be tween  
crystal and specimen reference  axes; Bunge  1965, R o e  
1965) is being employed.  This is known as the orientation 

distribution func t ion  or  O D F ,  and can b e - - w i t h i n  
limits---calculated f rom measu red  pole figures (Bunge  
1969). Such representat ions  have been called quant i ta t -  
ive (e.g. Bunge  1969) or  comple te  (e.g. Schmid & Casey  
1986) descriptions of  textures.  Bo th  terms are mislead- 
ing. 

A funct ion cannot  be m o r e  quanti tat ive or  more  

comple te  than the data it is calculated from. O D F s  are 
generally derived f rom pole  figures. It  is correct  that  
somet imes  a single pole figure is not  sufficient to define 
the or ienta t ion relationship. For  example,  a (0001) pole 
figure o f  quar tz  does not  give informat ion abou t  the 
or ienta t ion of  a-axes. H o w e v e r ,  a (1014) pole figure of  
calcite defines the or ienta t ion relation complete ly  and is 
sufficient to derive f rom it an O D F .  There  are several 
deficiencies of  ODFs .  Ambigui t ies  arise during the pole 
figure inversion due to the impossibility of  assigning 
directionali ty to poles (e.g. W e n k  et al. 1988). Also,  

f 

15 10 

05 

1 4  1 

a b c 
Fig. 10. Experimental simple shear pole figures [._or (a) (111) of Ni (fee), minima are dotted (Hughes & Wenk 1988); (b) 
(110) halite (Franssen & Spiers 1990); and (c) (1014) of calcite (maximum is shaded) (Kern & Wenk 1983). The shear plane 
is horizontal and the sense of shear is indicated. In none of these examples is there both an alignment of the crystallographic 
slip plane with the shear plane and the crystallographic slip direction with the shear direction as is predicted with the "easy 

glide' hypothesis. 
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Fig. 11. Top (a)-(d): orientation distribution of quartz in a recrystaUized mylonite from the northern Bergell Alps 
represented in spherical co-ordinates as a = (a + y)/2 sections which show a minimum of distortion. X s is chosen to be 

s parallel to the lineation and Y parallel to the pole of the schistosity. Since there is little change in the pattern with (r, a-axes 
are only moderately aligned. Contour levels are 1,2, 4, 8, 16 multiples of a random distribution, dotted 10" × 10 ° grid below 
1 m.r.d. Bottom (e): interpretation of a particular orientation maximum (a = 10 °, fl = 35 °, o = 30 °, y = 2o - a = 60 °) in 
terms of crystal orientation relative to specimen axe s X s, yS, Z s. Roe-Matthies convention for Euler angles a, fl and y. 
Except for dotted lines and open circles in (e) all features are equal-area projections of upper hemisphere. (0 & (g) (0001) 
and (1120) pole figures for comparison, schistosity (s) and lineation (l) are indicated in (f). Contour interval in (f) and (g) is 

1 m.r.d., dots are a 5 ° x 5 ° grid below 1 m.r.d. 

numbers  are not really quantitative unless errors and 
uncertainties are assigned (Matthies et al. 1988). Many 
ODFs  are incomplete because of the difficulty in resolv- 
ing the true crystal symmetry.  In the case of  quartz,  all 
published ODFs  have textures of left-handed and of 
right-handed crystals superposed.  Fur thermore ,  ODFs 
only describe orientations of crystals and contain no 
information on orientation relationships between neigh- 
boring grains and are therefore ' incomplete '  (e.g. 
Adams  1986). Despite these limitations, ODFs  have 
distinct advantages compared  to pole figures. For 
example the O D F  is necessary as an analytical method 
for texture simulations and for calculations of physical 
properties.  

As a method of representat ion,  the O D F  is not totally 
satisfactory. Not only have several specifications of 
Euler  angles, signs of angles and Greek  symbols been 
used (such as Bunge: q~1,~,@2; Canova: to,0,@; Casey: 
XI'tl,(I),xIF2; Kocks: ~ , ® , ~ ;  Matthies: a f t , y ;  Roe:  ~ , ® , ~ )  
which are by no means trivial to relate (e.g. Kocks 1988). 
The O D F  is also difficult to read and visualize, particu- 
larly if the density distribution of angles is represented in 
traditional Cartesian co-ordinates.  The more  natural 
representat ion of angles in spherical co-ordinates 
(Wenk & K o c k s  1987, Wenk  et al. 1987a, p. 733) has 
been helpful and provides greater  ease of visualization. 
An example is illustrated in Fig. 11. But even so, it is 
conceptually very difficult to transform an O D F  which is 
given in a certain sample reference frame to one with 
different sample reference axes. This is particularly 
serious for geological samples where assignments of 
foliation, cleavage and schistosity are often ambiguous. 

In the case of pole figures on stereographic or equal-area 
projections, such rotations of  sample co-ordinates can 
be easily visualized on the projection sphere. Deviations 
from orthorhombic symmetry  as an indicator of non- 
coaxial deformation,  for example,  can be measured on a 
pole figure with the help of an equal-area net. This is not 
possible with an O D F  without complicated transform- 
ations. Whereas  ODFs  are indeed more  compact  than 
pole figures, fabric diagrams (e.g. of quartz c-axes or 
calcite twin planes) remain very useful and no structural 
geologist should feel inhibited to use them because he 
does not have access to the elaborate mathematical  
f ramework  to calculate ODFs.  

The three-dimensional pole density distribution often 
contains a small number  of  strong peaks representing 
the orientation of a concentration of crystals. In the case 
of the mylonitic quartz texture in Fig. 11 there is an 
orientation concentration with a broad tube shape and a 
maximum at a = 10 °, fl = 35 ° and a = (a  + y) /2  = 30 ° 
shown in spherical co-ordinates as o-sections with mini- 
mum distortion (Helming et al. 1988) and using the 
convention of Matthies et al. (1988). Two Euler  angles 
(a,fl) describe the direction of the c-axes, and the third 
(y) the direction of the a-axes. We can immediately read 
f rom the projections the orientation of crystals which 
contribute to that maximum. As the diagram illustrates, 
it is possible to visualize graphically the orientation of 
these crystals relative to the sample,  which cannot be 
done from pole figures (e.g. Schmid et al. 1981). 

Long before ODFs  were invented, metallurgists 
characterized textures by 'ideal orientations '  (e.g. 
Grewen & Wassermann 1955). Wassermann & Grewen 
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(1962) used Miller indices to classify peaks in texture 
patterns of rolled metals. They determined which lattice 
plane (hkl) lies preferentially in the rolling plane and 
which lattice direction [uvw] lies in the rolling direction. 
This scheme of ideal orientations makes it easy to 
visualize the orientation of crystals contributing to a 
concentration in pole figures and ODFs, and has greatly 
gained in importance since three-dimensional orien- 
tation distributions became available and could be ex- 
pressed by model functions such as  combinations of 
Gaussians (Virnich et al. 1978). Some examples of 'ideal 
orientations' for fcc metals are shown in Table 1. Geolo- 
gists could use a similar scheme of ideal orientations 
using mesoscopic fabric co-ordinates as a reference 
system. One difficulty is that foliation and lineation are 
less clearly related to strain co-ordinates than the normal 
and rolling directions in a metallurgical rolling process. 
In addition, orientation distributions for geological 
materials often cannot be deconvoluted into simple 
Gauss components but form complicated tubes of high 
orientation density in the ODF (e.g. Schmid & Casey 
1986 for quartz, and Takeshita et al. 1987 for calcite). 

The essential point is that ideal orientations are a 
method of  description, and even though Miller indices 
are used, they have nothing to do with active slip 
systems. In rolled fcc metals there are about three 'ideal' 
orientations (copper, brass and Goss) depending on 
material and deformation conditions. The only active 
slip system, {lll}(1T0}, is not one of them (Table 1). 
Similarly in a rock there may be an orientation concen- 
tration with a lattice plane (hkl) in the foliation plane 
and a lattice direction [uvw] in the lineation direction but 
this is no evidence whatsoever about active slip systems. 
In 1928 it was permissible for Walter Schmidt to propose 
on intuition that in quartz the slip plane {1011} is in the 
foliation plane and the slip direction (1120) is the linea- 
tion direction. Since then, theories and experiments 
have demonstrated that this is not the case, and it is 
unpardonable if this mistake is perpetuated. Interest- 
ingly, Schmidt (1927b, p. 335: "Hier muss eine Konkur- 
renz zweier verschiedener Gitterebenen mitspielen, die 
je nach dem Gang der Reibungsverh/iltnisse mit den 
~iusseren Bedingungen zu verschiedenen Endlagen fiih- 
ren kann") had seen the possibility of multiple slip, but 

Table 1. Some 'ideal orientations'  in rolled cubic metals. {hkl} is 
parallel to the normal direction (rolling plane) and (uvw) is parallel to 

the rolling direction 

Euler angles 

Bunge Roe-Mat th ies  
convention convention 

{hkl}(uvw) Name (o) (o) (o) (o) (o) (o) 

{121}(111) copper 40 66 26 - 5 0  66 116 
(132)(_643) S 28 58 18 - 6 2  58 108 
{011}(211) brass 35 45 0 - 5 5  45 90 
{011}(100) Goss 0 45 0 - 9 0  45 90 
{025}(100) cube 0 22 0 - 9 0  22 90 

neither he nor later interpreters of quartz fabrics elabor- 
ated on it. 

EFFECTS OF HETEROGENEOUS DEFORMATION 

Stress equilibrium at the expense of strain compatibi- 
lity, and homogeneous deformation at the expense of 
equilibrium, are extreme assumptions which may be 
useful for model calculations only as long as the two 
solutions give similar results. Depending on the plastic 
properties of the material and on the deformation his- 
tory, deformation of a polycrystal can be modelled 
better with a theory which is closer to equilibrium (lower 
bound) or closer to compatibility (upper bound). It is 
interesting that the equilibrium theory is based on defor- 
mation experiments on crystals of hexagonal zinc (Mark 
et al. 1923, Polanyi 1925, Weissenberg 1925, Schmid 
1928), whereas Taylor was inspired by experiments on 
highly symmetric aluminum (Taylor & Elam 1923). The 
plastic anisotropy of polycrystals can be assessed by 
comparing Taylor factors for different grain orien- 
tations. The Taylor factor is proportional to the stress 
required to deform a crystal in an arbitrary orientation 
and can therefore never be lower than the critical 
resolved shear stress of the weakest slip system. In fcc 
metals the Taylor factor for the 'softest' orientation is 
about a factor of 2 lower than for the 'hardest' orien- 
tation. By contrast the range in Taylor factors for quartz 
is greater than an order of magnitude (Wenk et al. 
1989a). In the latter case, 'soft' grains are very likely to 
deform more and at a faster rate than 'hard' grains, 
leading to heterogeneous deformation which is indeed 
observed in experimentally deformed quartz aggregates 
and in quartzites deformed at low to moderate metamor- 
phic grade. 

Heterogeneous deformation has been approached 
with different theories. Some are within the Taylor 
framework. The 'relaxed constraints model' (Honneff & 
Mecking 1978, Kocks & Canova 1981) allows for arbi- 
trary deformation on small grain faces, such as occur on 
flattened or elongated grains. For a fiat grain such as that 
in Fig. 12, misfits on the small faces B and C are 
negligible. Equations which prescribe the shears del3 
and de23 can be neglected, requiring only three slip 
systems to be activated instead of five. This effectively 
favors soft slip systems with a low critical resolved shear 
stress over hard ones. The relaxed constraints model was 
successful in eliminating the artificial 'Taylor com- 
ponent' which persistently appeared in texture simu- 
lations of rolled fcc metals, but does not exist in reality. 
Obviously 'relaxed constraints' become meaningful only 
when crystals are already deformed or otherwise have an 
anisotropic grain shape. An aspect ratio of 2 is often 
chosen as a lower limit. A modification of 'relaxed 
constraints' has been applied successfully to simulations 
of high deformation symmetry such as curling in 
extruded body-centered-cubic wires (Hosford 1964) and 
axially compressed calcite (Wenk et al. 1986) where 
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Fig. 12. In the full constraint Taylor theory compatibility needs to be attained across all boundaries A, B and C, which 
requires five slip systems. In the relaxed constraint model for fiat grains, misfits across small faces B and C are allowed and 
equations which prescribe shears de13 (b) and de23 (c) are neglected. This reduces the number of required slip systems to 

three. 
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Fig. 13. Simulations of texture development in halite deformed in axial extension. Representation in inverse pole figures of 
the extension direction, 50% strain. The Taylor theory (a) predicts extension directions to move towards (111), whereas the 
viscoplastic self-consistent model (VPSC) (b) predicts rotations towards (00l). Stereographic projection (Wenk et al. 

1989b). Symbol sizes in the VPSC case indicate degree of deformation of individual grains. 

observed textures could not be explained with the fully 
constrained Taylor theory. 

Another extension of the Taylor theory is the 'cluster 
model' (Canova et al. 1985). This concept, from which 
results have not yet been published, allows a grain to 
deform heterogeneously, but homogeneity has to be 
maintained in an average cluster. A variation is the 
'constrained hybrid' model of Parks & Ahzi (1990), in 
which each grain is surrounded by a thin amorphous film 
within which it has more freedom. 

A different approach is the self-consistent theory, 
which maintains both equilibrium and compatibility, at 
least on the average over the whole polycrystal. The 
concept was originally developed for elasto-plastic de- 
formations (Krrner 1961, Budiansky & Wu 1962, Hut- 
chinson 1976). Recently a viscoplastic self-consistent 
theory (VPSC) was introduced by Molinari et al. (1987) 
to model large plastic strain. In the VPSC scheme, 
deviations in stress and strain rate of viscoplastically 
deforming grains from the macroscopically prescribed 
are minimized, taking account of interactions between 
neighbors. The theory can be viewed as a correction of 
the Taylor theory for self-consistency and neighbor 
interaction (Wenk et al. 1991). For plastically highly 
isotropic materials such as fcc metals, VPSC predictions 
agree closely with those of Taylor (Molinari et al. 1987), 
but if plastic anisotropy is significant, as in halite, results 

may be quite different (Wenk etal .  1989b) (Fig. 13). For 
axial extension (purely constrictional deformation) the 
VPSC theory predicts a maximum at (100) in the inverse 
pole figure due to the activation of only the weak 
(110)(101) slip system, whereas Taylor predicts a maxi- 
mum at (111) which is caused by (111)(]10) slip required 
to maintain compatibility. In the self-consistent model, 
unfavorably oriented grains are allowed to deform more 
slowly, and each grain has the freedom--within self- 
consistent constraints--to follow an optimum strain 
path which may be different from the macroscopically 
imposed one. Indeed, in the case of extension of halite 
some grains barely deform at all, others undergo plane 
strain deformation, and only a small fraction deforms in 
pure extension geometry (i.e. constriction), as is illus- 
trated with a Flinn diagram (Fig. 14). The VPSC defor- 
mation model has some very attractive features for 
structural geology. For example it is applicable to crys- 
tals with fewer than five slip systems, such as olivine 
(Takeshita et al. 1990) and polyphase materials such as 
peridotite (Wenk et al. 1991). 

If grains deform differently, intergranular heterogen- 
eity has to be compensated by intragranular heterogen- 
eity for the polycrystal to remain coherent. Recently the 
VPSC scheme has been modified to allow for hetero- 
geneous deformation within grains and was applied to a 
composite of quartz and relatively stiff platelets of mica 
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Fig. 14. Flinn diagram plotting predicted ratios of strain ellipsoid axis 
lengths for halite grains deformed in extension to 100% equivalent 
strain with the VPSC theory (el. Fig. 13). Note the wide distribution of 
grain shapes. For Taylor, all grains plot at log a/b = 0 and log b/c = 0.6 
(dot). The distance from the origin indicates the degree of defor- 
mation. Even though the macroscopic strain prescribes extension 
(dot) (i.e. constriction), many grains deform in plane strain (diagonal 

line) and some even in the field of flattening. 

Fig. 15. Two-dimensional section through a random microstructure of 
a 75% quartz (light)-25% mica (dark) aggregate divided into cubic 
cells. Microstructure is repeated by translation (Canova et al. in 

press). 

(Canova et al. in press). A microstructure of grains such 
as that in Fig. 7 is subdivided into cubic cells (Fig. 15). 
Each cell is specified by orientation, phase identity and 
stress state, and can deform differently, controlled by 
interaction with neighboring cells. Figure 16 illustrates 
(0001) pole figures for a quartz-mica composite de- 
formed in axial compression to 50% strain. On the left 
are pole figures for pure quartzite and a 75% quartz- 
25% mica mixture predicted when the whole grain is 
forced to deform uniformly. Notice that the pure quartz- 
ite has a weaker texture than the mixture. Since in the 
model mica barely deforms (only basal slip is allowed, 

preventing mica platelets from attaining an arbitrary 
shape change), all strain is accommodated in quartz, 
leading to larger rotations. On the right, each grain has 
been divided into domains which are allowed to deform 
differently. Each original grain orientation spreads with 
deformation into an increasingly wider distribution. 
Notice that here the pattern for pure quartz is less 
smooth than that for the mixture, due to interactions 
between 'strong' mica platelets and 'soft' quartz which 
forces quartz to deform heterogeneously. This behavior 
is more easily visualized by considering a single grain 
and the range of orientations that develop from it during 
deformation (Fig. 17). The spread is about twice as large 
for the quartz grain in the mixture as it is for the pure 
quartzite. Predictions with this domain scheme are in 
good accordance with observations that addition of 
stronger phases reduces the strength of preferred orien- 
tation of the more ductile phase (e.g. Starkey & Cut- 
forth 1978), although in the case of quartz-mica, de- 
formed experimentally in axial compression, part of the 
reduction in texture in the composite can be attributed 
to grain boundary sliding on mica, which undergoes 
grain size reduction (Fig. 18) (Wenk et al. 1990). As 
Handy (1990) has shown, the amount and preferred 
orientation of 'hard' phases greatly influences the rheo- 
logy of polymineralic rocks. 

Much of the confirmation of a theory relies on com- 
parison of textures in experiments and model simu- 
lations. Microstructural observations can directly pro- 
vide information on the homogeneity of the 
deformation, and thus the suitability of a plasticity 
model. For example, it is often observed that in de- 
formed quartzites some grains are strongly deformed 
and flattened whereas others appear as undeformed 
porphyroclasts (Fig. 19a). Indeed Tullis et al. (1973), 
Bouchez (1977) and Law (1986) described in quartz 
anisotropic grain shapes which correlate with the orien- 
tation. Takeshita & Wenk (1988) and Wenk et al. 

(1989b) have shown that strongly deformed grains in 
those reports are in orientations with a small Taylor 
factor, i.e. they are oriented favorably for slip on soft 
systems. In such deformed materials which display a 
large variation in aspect ratios, the strict Taylor theory 
cannot apply. 

Even more direct evidence about heterogeneity 
comes from observations of dislocations by transmission 
electron microscopy. While data which correlate crystal 
orientations and TEM data are scarce it has been docu- 
mented for polycrystais of experimentally deformed 
dolomite that in general those slip systems are active 
which are expected from the crystal orientation; but 
there are many exceptions. Stresses projected from 
neighboring grains activate slip systems which are not in 
accord with the macroscopic stress. There is evidence for 
tangling of dislocations and even cataclasis along grain 
boundaries (Fig. 19b). In most crystals only three or 
fewer slip systems could be identified. Again, these 
microstructural observations indicate that conditions of 
homogeneity of strain are not satisfied. We must expect 
to find deviations from the predictions of the Taylor 
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homogeneous grains heterogeneous cells 

Fig. 16. Deformation of pure quartz and a 75% quartz-25% mica mixture in axial compression to 50% strain according to 
the VPSC theory. Critical shear stresses are the same as for Fig. 9 (model fl). (0001) pole figures with the compression axis in 
the center. The figure compares results from a uniform grain scheme (intragranular heterogeneity) (left) with grains divided 

into heterogeneous cells (intergranular heterogeneity) (right). Equal-area projection (Canova et al. in press). 

75*/. quartz 25*/. mica 

C 

Fig. 17. Comparison of c-axis orientation of (a) a single quartz grain in the uniform grain scheme (from Fig. 16) splitting into 
subgrains in a cell scheme for (b) pure quartzite and (c) when 25% mica is added. Equal-area projection. 
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Fig. 18. (a) Pure quartz and (b) 75% quartz-25% mica mixture 
deformed experimentally by J. Tullis in axial compression to 40% 
strain at 800"C and a strain rate of 10 -5 s -t. Inverse pole figures of the 
compression axis in equal area projection. Minima are dotted. Note 
the similarity in pattern but the difference in strength of preferred 

orientation. 

theory in mineral systems, even though those predic- 
tions appear  to be a good first approximation.  

O T H E R  REFINEMENTS OF PLASTICITY MODELS 

There  are other refinements to the Taylor  theory that 
address real properties of  materials. Microstructural 

work hardening may modify critical shear stresses as 
deformat ion proceeds. Since weak systems on which 
most of  the deformation occurs may harden more 
quickly, the polycrystal becomes more  isotropic with 
increasing deformation and the Taylor  model  becomes 
more  applicable. Exper imental  information on harden- 
ing, particularly latent hardening-- i .e ,  the influence of 
active systems in hardening non-active systems-- is  
unavailable for most  minerals. For halite deformed at 
low temperature ,  simulations display a strong influence 
of hardening on texture development  (Wenk e t  al.  

1989b); in the case of  quartz, hardening has a less 
significant effect (Wenk e t  a l .  1989a). 

Another  important  consideration is the strain rate 
sensitivity with respect to stress. The original Taylor 
theory assumed a rigid-plastic behavior;  i.e. no defor- 
mation occurs until the critical resolved shear stress is 
reached,  at which point deformation is instantaneous. It  
has been mentioned above that such a behavior  is 
unrealistic. A viscoplastic power law is often used to 
describe the strain rate (~) sensitivity to the stress r 
(~ = Az~). For a stress exponent  n = oo such a law 
describes rigid-plastic behavior;  for n = 1 it describes a 
viscous Newtonian fluid. In between it applies to visco- 
plastic behavior. Note  that with such a description the 
behavior  for stresses above the critical resolved shear 
stress rc is meaningless. For  metals with stress exponents 
between 50 and 100 deviations from rigid-plastic behav- 
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Fig. 19. Microstructures illustrating heterogeneous deformation on a local scale. (a) Photomicrograph of a quartz mylonite 
from the Bergell Alps with many highly flattened and some almost undeformed grains. Crossed polars. (b) TEM electron 
micrograph of dislocation structures in experimentally deformed polycrystalline dolomite with dense tangles and some 

microfracturing along grain boundaries. (Courtesy of D. J. Barber.) 
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Fig. 20. Strain rate ~ vs shear stress r plot for rigid plastic (n = ~ ) ,  
Newtonian viscous (n = I)  and a power law viseoplastic behavior.  
Note that in viscoplastie deformation crystals begin to deform below 
the critical shear  stress t c but  at a lower rate. The behavior  above the 

critical shear stress is physically meaningless. 

ior are small. But for many minerals with stress ex- 
ponents between 3 and 10 the strain rate sensitivity is 
significant. Crystals deform at low stresses, below the 
critical resolved shear stress, albeit more slowly 
(Fig. 20). In viscoplastic deformation all slip systems are 
active in each crystal at all times, but some only to a very 
small degree. Again, as with hardening, taking account 
of strain rate sensitivity causes strain to be distributed 
more uniformly over many slip systems, leading to a 
reduction in plastic anisotropy. Strain rate sensitivity is 
not very significant for texture development in minerals 
such as calcite, halite and olivine. However, for quartz 
the influence on texture is profound (Fig. 21; see also 
Wenk et al. 1989a). The viscoplastic texture is smoother 
than the rigid-plastic texture, corresponding better to 
natural quartz textures, and, in simple shear, rotations 
are more uniform so that texture maxima develop more 
slowly both in Taylor and VPSC simulations (Fig. 9, 
right side). 

In the foregoing discussion texture development has 
been emphasized. This is one important parameter in 
polycrystal plasticity and a very sensitive indicator of 

strain history. But development of preferred orientation 
is merely an expression of slip system activity which 
influences other parameters such as yield stress and 
changes of yield stress with the deformation history. 
Whether a material hardens or softens due to the devel- 
opment of preferred orientation often cannot be deter- 
mined experimentally for complex strain paths, includ- 
ing geologically important pure shear and simple shear 
deformation. However, it can be easily calculated, and 
we can determine, for example, that a quartzite subjec- 
tected to a macroscopic strain at low temperature de- 
forms more easily in axial compression (flattening), and 
at high temperature in axial tension (elongation) (Fig. 
22), which is consistent with observations in naturally 
deformed metamorphic rocks (e.g. Bouchez 1977). The 
internal 'plastic' anisotropic structure of a rock may 
determine along which deformation path a rock may 
continue to deform. If texture development produces 
weakening, there is a chance for instabilities (e.g. White 
et al. 1980). Deformation may concentrate in narrow 
zones or bands such as in mylonite zones, though com- 
monly composition is also an important factor, most 
mylonitic rocks being quartz-rich and probably hydro- 
lytically weakened. The anisotropy and heterogeneity of 
macroscopic flow in polycrystalline aggregates is directly 
related to the microscopic deformation behavior and the 
detailed analysis of polycrystal plasticity therefore has 
implications for the interpretation of large-scale defor- 
mations of tectonic importance. 

EFFECT OF RECRYSTALLIZATION 

Closely linked to deformation by slip is recrystalliza- 
tion, and a short discussion is appropriate because 
recrystallization--whether static or dynamic--is a major 
process by which preferred orientation develops in rocks 
(Green et al. 1970). The driving force for any recrystalli- 
zation is internal strain. There is a general tendency for a 
grain boundary to move towards the more highly de- 
formed grain, thereby reducing the free energy of the 
system. This results in a preferential selection of grains 
with no, or few dislocations which dominate the fabric. 

- . 9 -  

n=99 n=9  n = 3  
Fig. 21. Quartz c-axis pole figures predicted with a viscoplastic Taylor theory for pure shear deformation to 100% equivalent 
strain. Critical shear stresses correspond to high temperature  with prismatic slip dominating (same as Fig. 9). Illustrated is 
the influence of the stress exponent  on texture development,  where n = 3 is the experimentally determined value for 

quartzite (e.g. Heard  & Carter 1968, Koch et  al. 1989). Equal-area projection (Wenk et al. 1989a). 
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Fig. 22. Changes in the average Taylor factor M with equivalent Von Mises e~m strain for quartzite. M is a measure of the 
plastic strength of the polycrystal due to crystal orientations and critical resolved shear stresses. It is based on the Taylor 
theory with five slip systems operating in each grain. Deformation is in elongation EL (axial tension), pure shear PU, simple 
shear SI, and flattening FL (axial compression) at low temperature (a) where basal slip is easiest and at high temperature, 
(b) where prismatic slip dominates (Takeshita & Wenk 1988). The material softens at low temperature during flattening, at 

high temperature during elongation. 

This has been impressively documented by in situ 
observations of recrystallization during deformation in 
two-dimensional model systems such as octachloropro- 
pane, camphor and NaNO3 (e.g. Tungatt & Humphreys 
1981, Means 1983, Jessell 1986, Means & Jessell 1986, 
Urai et al. 1986, Means & Ree 1988). In these experi- 
ments there is a general tendency for less deformed 
grains to replace more highly deformed grains which are 
more favorably oriented for slip. Similar features have 
been described in experimentally deformed dunite 
where olivine grains in favorable orientations for slip 
have higher dislocation densities and recrystallize first 
(Karato 1987). 

Unfortunately recrystallization is much less under- 
stood than deformation by slip (e.g. Gottstein & Mec- 
kbag 1985, Doherty et al. 1988). There is no agreement 
among metallurgists whether preferred nucleation or 
preferred grain growth governs recrystallization in 
which materials and under which conditions, even for fcc 
metals. No general model is available to predict texture 
development. In all materials investigated so far (includ- 
ing quartz, Hobbs 1968), there appears to be a close 
orientation relationship between host and newly nu- 
cleated grains and therefore a recrystallization texture 
generally emphasizes some components of the defor- 
mation texture. 

However, nucleation of new grains involves a discon- 
t inuous change of orientation that is not provided for by 
predictions of pure plasticity theories, though the new 
orientations are probably related to the slip history. 
Hobbs (1968) demonstrated convincingly that nuclea- 
tion in deformed quartz crystals, recrystallized during 
deformation or during annealing, occurs in the most 
deformed regions (such as deformation bands). The 
observed orientations of neoblasts are consistent with 
the nuclei having the orientations of the most highly 
deformed and rotated regions of the host, such as kinks 
and subgrains. In annealing, c-axes of neoblasts are 
inclined up to 40 ° to that of the host crystal, with those at 
20-40 ° to the host growing most rapidly. During syntec- 
tonic recrystallization, c-axes of new grains tend to lie at 
30-50 ° to that of the host. This is consistent with exten- 

sive TEM observations of in situ recrystaUization in 
metals that new grains nucleate in regions of highest 
dislocation density, which rapidly form subgrains and 
grow at the expense of surrounding strained matrix, 
sometimes by subgrain coalescence. During dynamic (or 
syntectonic) recrystaUization these new grains, which 
are initially dislocation-free and therefore relatively 
soft, deform continuously by slip and climb. 

Jessell (1988a,b) and Jessell & Lister (1990) have 
devised a model for texture development during recrys- 
tallization, assuming that grain boundary migration is 
the dominant mechanism, and applied it to quartz and 
ice. In this case the less deformed grains consume the 
more highly deformed grains. Jessell (1988a) assessed 
the degree of deformation of individual grains with the 
Taylor factor. A more quantitative measure would be 
the accumulated plastic work which can be evaluated 
with the self-consistent theory. 

Wenk et al. (1989a) have noted that in VPSC simu- 
lations of quartz deformed in pure shear the most highly 
deformed grains (Fig. 23a) have the same orientation as 
recrystailized grains in quartzite mylonites, i.e. a con- 
centration of c-axes in the intermediate fabric direction 
(Fig. 23b). They concluded that in such a case nucleation 
of new grains may occur in the same orientation as those 
grains which have accumulated the largest plastic work. 
These grains would grow and dominate the ultimate 
texture pattern. This is in agreement with the obser- 
vations of Hobbs (1968). 

A similar case may exist for halite deformed in exten- 
sion. Strongly deformed grains have extension axes near 
(001) (Fig. 24) (Wenk et al. 1989b). The texture of 
recrystallized extruded halite also has a maximum near 
(001) (Fig. 24b) (Skrotzki & Welch 1983). 

These arguments about recrystallization are still very 
qualitative but they suggest that refined polycrystal 
plasticity theories may also be a key to understanding 
the role of recrystaUization in the development of pre- 
ferred orientation. As with slip, the problem of poly- 
phase materials will be profound in the case of polymi- 
neralic rocks because chemical and physical differences 
will inhibit grain boundary migration. 
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a b 
Fig. 23. (0001) pole figures for quartz. (a) VPSC prediction for pure shear deformation to 50% equivalent strain. Symbol 
size is proportional to the accumulated plastic work. Critical resolved shear stresses are the same as for Fig. 9 (model fl of 
Wenk et al. 1989a). (b) Naturally deformed recrystaUized quartz myionite from the northern Bergell Alps (of. Fig. 11). 
Schistosity plane (s) and lineation (1) are shown. Equal-area projection, dotted below 1 m.r.d. Note that grains with the 

highest accumulated plastic work are in the same orientation as those in the recrystaUized tectonite. 
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a b 
Fig. 24. Inverse pole figures for halite deformed in axial extension. (a) Viscoplastic self-consistent prediction for 100% 
deformation. Symbol size is proportional to accumulated plastic work. (b) Experimentally extruded recrystallized halite, 
after Skrotsky & Welch (1983). Maxima are shaded. Stereographic projection (compare with Fig. 13). The orientation of 

the highly deformed grains at (001) in (a) corresponds well with the recrystallized texture. 

DISCUSSION 

Mineral preferred orientation patterns have long been 
used to analyze geological history. In this endeavor the 
symmetry principle, which states that the symmetry of a 
texture has to be a subgroup of the symmetry of the 
starting texture and of the strain path (Paterson & Weiss 
1961), has been the most useful guide for interpreting 
deformation textures and has been widely applied. For 
example, pole figures with orthorhombic symmetry are 
taken to indicate coaxial deformation, whereas monocli- 
nic or triclinic pole figures imply a component of non- 
coaxial deformation. The symmetry principle makes no 
assumptions about mechanisms and has therefore a very 
general validity. However with the advent of polycrystal 
plasticity theories, interpretations can be more quanti- 
tative in specific cases. If deformation occurs by slip then 
the amount of simple shear can be estimated from the 
degree of asymmetry (e.g. in calcite the angular dis- 
placement of the c-axis maximum from the pole of the 

schistosity, Wenk et al. 1987b). The pattern of preferred 
orientation is a result of the whole strain history, and not 
just the finite strain. For example, a cube of aluminum 
which is alternately compressed in the three cube nor- 
mals develops strong preferred orientation, even though 
the finite strain ellipsoid never deviates much from a 
sphere (Takeshita et al. 1989). Also limestone which is 
first compressed and then extended to regain its original 
shape, is textured (Wenk et al. 1986). However with a 
uniform strain path, preferred orientation increases with 
increasing strain and strong textures generally indicate 
large deformations. But to use preferred orientation 
quantitatively to infer the finite strain is unjustified 
unless some very restrictive assumptions are made (e.g. 
Ribe 1989, Ribe & Yu 1991). 

Since critical resolved shear stresses on different slip 
systems may change differently with temperature (in 
quartz, basal slip is preferred at low temperature and 
prismatic slip at higher temperature; in calcite, e- 
twinning dominates at low temperature and r-slip at 
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higher temperature), the texture ,type may yield clues 
about the metamorphic conditions during tectonism 
(e.g. Lister & Hobbs 1980). But convincing interpre- 
tations are only possible for carefully selected cases and 
only in conjunction with detailed structural investi- 
gations. The Saxony granulites are a good example of 
oversimplified interpretations of quartz fabric diagrams 
(e.g. Behr 1968 and Lister & Dornsiepen 1982 interpret 
a regional texture change as due to temperature, while 
Hofmann 1974 attributes it to a change in strain regime). 

Another complication in the interpretation of geologi- 
cal textures is that the mechanisms of deformation and 
of texture development may change in the course of the 
geological history. For example in a mylonite zone rocks 
may initially deform by dislocation glide, then recrystal- 
lize, and with a reduced grain size grain boundary sliding 
may become the dominant mechanism. Some defor- 
mations do not produce preferred orientation. They 
include diffusion (e.g. during dislocation climb) and 
cataclasis (except if crystals are non-equiaxed, Tullis & 
Yund 1987). Lack of preferred orientation in deformed 
rocks is often a good indication that mechanisms such as 
superplasticity through grain boundary sliding have 
operated (e.g. Schmid et al. 1977). Also solution transfer 
('pressure solution', e.g. Robin 1978) generally does not 
produce significant preferred orientations although in 
special cases a mechanism due to anisotropic dissolution 
and growth rates in a stress field may give rise to 
preferred orientation (Tullis 1989). 

If grains have initially a non-equiaxed shape, then 
there will be passive rotations which produce preferred 
orientation. Deformation of rigid particles in a viscous 
medium has been modelled by Jeffery (1923) and geo- 
logical applications were recently reviewed by Oertel 
(1983). These rigid-body rotations are in general taken 
into account in polycrystal plasticity models. 

Since the time of Sander and Schmidt, the theory of 
polycrystal plasticity and texture development has seen 
great advances. Texture development during defor- 
mation is no longer a realm of intuitive perception but of 
rigorous analysis. While the physical framework is 
pretty well established, the mechanical solution is ex- 
tremely complicated, requiring approximations and 
leaving space not only for inaccuracies but also for 
errors. Progress will probably not come from grandiose 
new ideas, but from painstaking refinements, many of 
them empirical and requiring comparison with experi- 
ments which have not yet been done. For each mineral 
and for each temperature, pressure and strain-rate 
regime, it needs to be decided which theory--  
emphasizing compatibility, equilibrium, or both--is 
most suitable to model deformation of rocks, and 
whether the behavior changes with progressive strain. In 
the future, models will have to be developed which take 
better account of microstructure and combinations of 
different mechanisms such as slip, climb, recrystalliza- 
tion and grain boundary sliding, particularly in polymi- 
neralic rocks. Heterogeneous deformation on all scales 
will no doubt become an important topic of future 
research and besides classical polycrystal plasticity 

theory, finite element methods will become increasingly 
used (e.g. Mathur & Dawson 1989, McHugh et al. 1989, 
Mathur et al. 1990). 

In conclusion, we would like to emphasize again the 
importance of polycrystal plasticity theory for the under- 
standing of preferred orientation patterns which devel- 
oped during deformation. We have tried to dispel some 
misconceptions and to illustrate some of the dilemmas 
which need to be addressed in the future, i.e. the balance 
between stress equilibrium and strain compatibility for 
modelling deformation and the balance between nuclea- 
tion and grain growth for modelling recrystaUization. In 
this task close collaboration with materials scientists and 
physicists will be essential, and creative but unfounded 
intuition should be discouraged. In spite of difficulties, 
prospects for texture analysis in the earth sciences are 
exciting and it will remain an important and challenging 
subject to pursue through field observations, measure- 
ments, experiments, and theoretical analysis. 
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